Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Gastro Hep Adv ; 3(1): 38-47, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38390283

RESUMEN

BACKGROUND AND AIMS: The overexpression of glial cell-derived neurotrophic factor (GDNF) in the liver and adipose tissues offers strong protection against high-fat diet (HFD)-induced obesity in mice. We hypothesize that sustainably enhancing GDNF expression in the liver may provide a therapeutic effect that can prevent the progression of HFD-induced obesity in mice. METHODS: Expression lentivector encoding mouse GDNF (GDNF(pDNA) or empty vector (pDNA, control) were encapsulated in lipid nanoparticles (LNPs) using the thin-film hydration method. Mice were fed with regular diet (RD) or HFD for 20 weeks prior to injection and the GDNF and control vector-loaded LNPs were administered by intravenous (IV) injection to mice once weekly for 5 weeks. Changes in body weight were monitored and mice tissues were collected and imaged for fluorescence using an IVIS in vivo imaging system. Post-treatment abdominal fat weight, colon length, and spleen weight were obtained. GDNF protein levels in the liver and serum were quantified by enzyme-linked immunosorbent assay, while liver AKT serine/threonine kinase and AMP-activated protein kinase phosphorylation levels were evaluated by Western blotting. RESULTS: IV-injected GDNF(pDNA)-loaded LNPs targeted the liver and remained in there for up to 15 days postinjection. A single injection of GDNF(pDNA)-loaded LNPs significantly increased GDNF expression for 7 days and consequently increased the levels of phosphorylated AKT serine/threonine kinase and AMP-activated protein kinase. Once weekly injections of GDNF(pDNA)-loaded LNPs for 5 weeks slowed increase in body weight, reduced abdominal fat, and modulated the gut microbiota toward a healthier composition in HFD-fed mice. CONCLUSION: GDNF(pDNA)-loaded LNPs could potentially be developed as a therapeutic strategy to reverse weight gain in obese patients.

2.
Cancer Immunol Res ; 12(5): 631-643, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38407902

RESUMEN

Chimeric antigen receptor (CAR) T cells are emerging as an effective antitumoral therapy. However, their therapeutic effects on solid tumors are limited because of their short survival time and the immunosuppressive tumor microenvironment. Memory T cells respond more vigorously and persist longer than their naïve/effector counterparts. Therefore, promoting CAR T-cell development into memory T cells could further enhance their antitumoral effects. HI-TOPK-032 is a T-LAK cell-originated protein kinase (TOPK)-specific inhibitor that moderately represses some types of tumors. However, it is unknown whether HI-TOPK-032 works on hepatocellular carcinoma (HCC) and whether it impacts antitumoral immunity. Using both subcutaneous and orthotopic xenograft tumor models of two human HCC cell lines, Huh-7 and HepG2, we found that HI-TOPK-032 significantly improved proliferation/persistence of CD8+ CAR T cells, as evidenced by an increase in CAR T-cell counts or frequency of Ki-67+CD8+ cells and a decrease in PD-1+LAG-3+TIM-3+CD8+ CAR T cells in vivo. Although HI-TOPK-032 did not significantly suppress HCC growth, it enhanced the capacity of CAR T cells to inhibit tumor growth. Moreover, HI-TOPK-032 augmented central memory CD8+ T cell (TCM) frequency while increasing eomesodermin expression in CD8+ CAR T cells in tumor-bearing mice. Moreover, it augmented CD8+ CAR TCM cells in vitro and reduced their expression of immune checkpoint molecules. Finally, HI-TOPK-032 inhibited mTOR activation in CAR T cells in vitro and in tumors, whereas overactivation of mTOR reversed the effects of HI-TOPK-032 on CD8+ TCM cells and tumor growth. Thus, our studies have revealed mechanisms underlying the antitumoral effects of HI-TOPK-032 while advancing CAR T-cell immunotherapy.


Asunto(s)
Carcinoma Hepatocelular , Inmunoterapia Adoptiva , Neoplasias Hepáticas , Células T de Memoria , Humanos , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/patología , Animales , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patología , Ratones , Inmunoterapia Adoptiva/métodos , Células T de Memoria/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto , Línea Celular Tumoral , Receptores Quiméricos de Antígenos/inmunología , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Linfocitos T CD8-positivos/inmunología , Microambiente Tumoral/inmunología
3.
Carbohydr Polym ; 312: 120839, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37059564

RESUMEN

ß-ionone has a unique violet odor and good biological activity, which is an essential fragrance component and potential anticancer drug. In this paper, ß-ionone was encapsulated using complex coacervation of gelatin and pectin, followed by cross-linking with glutaraldehyde. The pH value, wall material concentration, core-wall ratio, homogenization conditions, and curing agent content were investigated in the single-factor experiments. For example, the encapsulation efficiency increased with the homogenization speed, which reached a relatively high value at 13000 r/min for 5 min. The gelatin/pectin ratio (3:1, w/w) and pH value (4.23) significantly affected the size, shape, and encapsulation efficiency of the microcapsule. The fluorescence microscope and SEM were used to characterize the morphology of the microcapsules, in which the microcapsule has a stable morphology, uniform size, and spherical multinuclear structure. FTIR measurements confirmed the electrostatic interactions between gelatin and pectin during complex coacervation. Thermogravimetric analysis (TGA) revealed that the microcapsules could maintain good thermal stability over 260 °C. The release rate of ß-ionone microcapsule was only 20.6 % after 30 days at the low temperature of 4 °C. These findings provide an effective carrier to deliver flavors like ß-ionone and could be useful in the fields of daily chemicals and textiles.

4.
Biomolecules ; 13(2)2023 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-36830577

RESUMEN

BACKGROUND: Diarrhea is present in up to 30-50% of patients with COVID-19. The mechanism of SARS-CoV-2-induced diarrhea remains unclear. We hypothesized that enterocyte-enteric neuron interactions were important in SARS-CoV-2-induced diarrhea. SARS-CoV-2 induces endoplasmic reticulum (ER) stress in enterocytes causing the release of damage associated molecular patterns (DAMPs). The DAMPs then stimulate the release of enteric neurotransmitters that disrupt gut electrolyte homeostasis. METHODS: Primary mouse enteric neurons (EN) were exposed to a conditioned medium from ACE2-expressing Caco-2 colonic epithelial cells infected with SARS-CoV-2 or treated with tunicamycin (ER stress inducer). Vasoactive intestinal peptides (VIP) expression and secretion by EN were assessed by RT-PCR and ELISA, respectively. Membrane expression of NHE3 was determined by surface biotinylation. RESULTS: SARS-CoV-2 infection led to increased expression of BiP/GRP78, a marker and key regulator for ER stress in Caco-2 cells. Infected cells secreted the DAMP protein, heat shock protein 70 (HSP70), into the culture media, as revealed by proteomic and Western analyses. The expression of VIP mRNA in EN was up-regulated after treatment with a conditioned medium of SARS-CoV-2-infected Caco-2 cells. CD91, a receptor for HSP70, is abundantly expressed in the cultured mouse EN. Tunicamycin, an inducer of ER stress, also induced the release of HSP70 and Xbp1s, mimicking SARS-CoV-2 infection. Co-treatment of Caco-2 with tunicamycin (apical) and VIP (basolateral) induced a synergistic decrease in membrane expression of Na+/H+ exchanger (NHE3), an important transporter that mediates intestinal Na+/fluid absorption. CONCLUSIONS: Our findings demonstrate that SARS-CoV-2 enterocyte infection leads to ER stress and the release of DAMPs that up-regulates the expression and release of VIP by EN. VIP in turn inhibits fluid absorption through the downregulation of brush-border membrane expression of NHE3 in enterocytes. These data highlight the role of epithelial-enteric neuronal crosstalk in COVID-19-related diarrhea.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Ratones , Animales , SARS-CoV-2/metabolismo , Intercambiador 3 de Sodio-Hidrógeno , Tunicamicina , Células CACO-2 , Medios de Cultivo Condicionados , Proteómica , Intercambiadores de Sodio-Hidrógeno/genética , Intercambiadores de Sodio-Hidrógeno/metabolismo , Diarrea , Chaperón BiP del Retículo Endoplásmico , Neuronas/metabolismo
5.
Angew Chem Int Ed Engl ; 62(5): e202210050, 2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36328980

RESUMEN

A ferrocene surfactant can be switched between single and double head form (FcN+ C12 /Fc+ N+ C12 ) triggered by redox reaction. FcN+ C12 can neither stabilize an O/W emulsion alone nor an oil-in-dispersion emulsion in combination with alumina nanoparticles due to the steric hindrance of the ferrocene group. However, such steric hindrance can be overcome by increasing the charge density in Fc+ N+ C12 , so that oil-in-dispersion emulsions can be co-stabilized by Fc+ N+ C12 and alumina nanoparticles at very low concentrations (1×10-7  M (≈50 ppb) and 0.001 wt %, respectively). Not only can reversible formation/destabilization of oil-in-dispersion emulsions be achieved by redox reaction, but also reversible transformation between oil-in-dispersion emulsions and Pickering emulsions can be obtained through reversing the charge of alumina particles by adjusting the pH. The results provide a new protocol for the design of surfactants for stabilization of smart oil-in-dispersion emulsions.

6.
Life (Basel) ; 12(12)2022 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-36556345

RESUMEN

Plant-specific Rac/Rop small GTPases, also known as Rop, belong to the Rho subfamily. Rac proteins can be divided into two types according to their C-terminal motifs: Type I Rac proteins have a typical CaaL motif at the C-terminal, whereas type II Rac proteins lack this motif but retain a cysteine-containing element for membrane anchoring. The Rac gene family participates in diverse signal transduction events, cytoskeleton morphogenesis, reactive oxygen species (ROS) production and hormone responses in plants as molecular switches. S. album is a popular semiparasitic plant that absorbs nutrients from the host plant through the haustoria to meet its own growth and development needs. Because the whole plant has a high use value, due to the high production value of its perfume oils, it is known as the "tree of gold". Based on the full-length transcriptome data of S. album, nine Rac gene members were named SaRac1-9, and we analyzed their physicochemical properties. Evolutionary analysis showed that SaRac1-7, AtRac1-6, AtRac9 and AtRac11 and OsRac5, OsRacB and OsRacD belong to the typical plant type I Rac/Rop protein, while SaRac8-9, AtRac7, AtRac8, AtRac10 and OsRac1-4 belong to the type II Rac/ROP protein. Tissue-specific expression analysis showed that nine genes were expressed in roots, stems, leaves and haustoria, and SaRac7/8/9 expression in stems, haustoria and roots was significantly higher than that in leaves. The expression levels of SaRac1, SaRac4 and SaRac6 in stems were very low, and the expression levels of SaRac2 and SaRac5 in roots and SaRac2/3/7 in haustoria were very high, which indicated that these genes were closely related to the formation of S. album haustoria. To further analyze the function of SaRac, nine Rac genes in sandalwood were subjected to drought stress and hormone treatments. These results establish a preliminary foundation for the regulation of growth and development in S. album by SaRac.

7.
Front Cell Dev Biol ; 10: 922675, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35927984

RESUMEN

The tumor suppressor p53 is critical for the maintenance of genome stability and protection against tumor malignant transformation, and its homeostasis is usually regulated by ubiquitination. MDM2 is a major E3 ligase of p53 ubiquitination, and its activity is enhanced by TRIM28. TRIM28 also independently ubiquitinates p53 as an E3 ligase activated by MAGE-C2. Moreover, MAGE-C2 is highly expressed in various cancers, but the detailed mechanisms of MAGE-C2 involved in MDM2/TRIM28-mediated p53 ubiquitination remain unknown. Here, we found that MAGE-C2 directly interacts with MDM2 through its conserved MHD domain to inhibit the activity of MDM2 on p53 ubiquitination. Furthermore, TRIM28 acts as an MAGE-C2 binding partner and directly competes with MAGE-C2 for MDM2 interaction, thus releasing the inhibitory role of MAGE-C2 and promoting p53 ubiquitination. MAGE-C2 suppresses cell proliferation in TRIM28-deficient cells, but the overexpression of TRIM28 antagonizes the inhibitory role of MAGE-C2 and accumulates p53 ubiquitination to promote cell proliferation. This study clarified the molecular link of MAGE-C2 in two major E3 systems MDM2 and TRIM28 on p53 ubiquitination. Our results revealed the molecular function of how MAGE-C2 and TRIM28 contribute to p53 ubiquitination and cell proliferation, in which MAGE-C2 acts as a potential inhibitor of MDM2 and TRIM28 is a vital regulator for MAGE-C2 function in p53 protein level and cell proliferation. This work would be helpful to understand the regulation mechanism of tumor suppressor p53.

8.
Redox Biol ; 55: 102407, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35853304

RESUMEN

Iron is a mineral essential for blood production and a variety of critical cellular functions. Altered iron metabolism has been increasingly observed in many diseases and disorders, but a comprehensive and mechanistic understanding of the cellular impact of impaired iron metabolism is still lacking. We examined the effects of iron overload or iron deficiency on cellular stress responses and autophagy which collectively regulate cell homeostasis and survival. Acute iron loading led to increased mitochondrial ROS (mtROS) production and damage, lipid peroxidation, impaired autophagic flux, and ferroptosis. Iron-induced mtROS overproduction is the mechanism of increased lipid peroxidation, impaired autophagy, and the induction of ferroptosis. Iron excess-induced ferroptosis was cell-type dependent and regulated by activating transcription factor 4 (ATF4). Upregulation of ATF4 mitigated iron-induced autophagic dysfunction and ferroptosis, whereas silencing of ATF4 expression impaired autophagy and resulted in increased mtROS production and ferroptosis. Employing autophagy-deficient hepatocytes and different autophagy inhibitors, we further showed that autophagic impairment sensitized cells to iron-induced ferroptosis. In contrast, iron deficiency activated the endoplasmic reticulum (ER) stress response, decreased autophagy, and induced apoptosis. Decreased autophagy associated with iron deficiency was due to ER stress, as reduction of ER stress by 4-phenylbutyric acid (4-PBA) improved autophagic flux. The mechanism of decreased autophagy in iron deficiency is a disruption in lysosomal biogenesis due to impaired posttranslational maturation of lysosomal membrane proteins. In conclusion, iron excess and iron deficiency cause different forms of cell stress and death in part through the common mechanism of impaired autophagic function.

9.
Microbiol Spectr ; 10(3): e0041422, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35608350

RESUMEN

While circulating cell-free DNA (cfDNA) is becoming a powerful marker for noninvasive identification of infectious pathogens in liquid biopsy specimens, a microbial cfDNA baseline in healthy individuals is urgently needed for the proper interpretation of microbial cfDNA sequencing results in clinical metagenomics. Because noninvasive prenatal testing (NIPT) shares many similarities with the sequencing protocol of metagenomics, we utilized the standard low-pass whole-genome-sequencing-based NIPT to establish a microbial cfDNA baseline in healthy people. Sequencing data from a total of 107,763 peripheral blood samples of healthy pregnant women undergoing NIPT screening were retrospectively collected and reanalyzed for microbiome DNA screening. It was found that more than 95% of exogenous cfDNA was from bacteria, 3% from eukaryotes, and 0.4% from viruses, indicating the gut/environment origins of many microorganisms. Overall and regional abundance patterns were well illustrated, with huge regional diversity and complexity, and unique interspecies and symbiotic relationships were observed for TORCH organisms (Toxoplasma gondii, others [Treponema pallidum {causing syphilis}, hepatitis B virus {HBV}, and human parvovirus B19 {HPV-B19}], rubella virus, cytomegalovirus [CMV], and herpes simplex virus [HSV]) and another common virus, Epstein-Barr virus (EBV). To sum up, our study revealed the complexity of the baseline circulating microbial cfDNA and showed that microbial cfDNA sequencing results need to be interpreted in a more comprehensive manner. IMPORTANCE While circulating cell-free DNA (cfDNA) has been becoming a powerful marker for noninvasive identification of infectious pathogens in liquid biopsy specimens, a baseline for microbial cfDNA in healthy individuals is urgently needed for the proper interpretation of microbial cfDNA sequencing results in clinical metagenomics. Standard low-pass whole-genome-sequencing-based NIPT shares many similarities with the sequencing protocol for metagenomics and could provide a microbial cfDNA baseline in healthy people; thus, a reference cfDNA data set of the human microbiome was established with sequencing data from a total of 107,763 peripheral blood samples of healthy pregnant women undergoing NIPT screening. Our study revealed the complexity of circulating microbial cfDNA and indicated that microbial cfDNA sequencing results need to be interpreted in a more comprehensive manner, especially with regard to geographic patterns and coexistence networks.


Asunto(s)
Ácidos Nucleicos Libres de Células , Infecciones por Virus de Epstein-Barr , Microbiota , Pruebas Prenatales no Invasivas , Ácidos Nucleicos Libres de Células/genética , Femenino , Herpesvirus Humano 4 , Humanos , Microbiota/genética , Embarazo , Estudios Retrospectivos
10.
PLoS One ; 17(3): e0264743, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35231062

RESUMEN

Fibroblast growth factor 23 (FGF23) is a bone marrow cell produced hormone that functions in the intestine and kidney to regulate phosphate homeostasis. Increased serum FGF23 is a well-established predictor of mortality in renal disease, but recent findings linking increased levels to hepatic and cardiac diseases have suggested that other organs are sources of FGF23 or targets of its effects. The potential ability of the liver to produce FGF23 in response to hepatocellular injury was therefore examined. Very low levels of Fgf23 mRNA and FGF23 protein were detected in normal mouse liver, but the amounts increased markedly during acute liver injury from the hepatotoxin carbon tetrachloride. Serum levels of intact FGF23 were elevated during liver injury from carbon tetrachloride. Chronic liver injury induced by a high fat diet or elevated bile acids also increased hepatic FGF23 levels. Stimulation of toll-like receptor (TLR) 4-driven inflammation by gut-derived lipopolysaccharide (LPS) underlies many forms of liver injury, and LPS induced Fgf23 in the liver as well as in other organs. The LPS-inducible cytokines IL-1ß and TNF increased hepatic Fgf23 expression as did a TLR2 agonist Pam2CSK3. Analysis of Fgf23 expression and FGF23 secretion in different hepatic cell types involved in liver injury identified the resident liver macrophage or Kupffer cell as a source of hepatic FGF23. LPS and cytokines selectively induced the hormone in these cells but not in hepatocytes or hepatic stellate cells. FGF23 failed to exert any autocrine effect on the inflammatory state of Kupffer cells but did trigger proinflammatory activation of hepatocytes. During liver injury inflammatory factors induce Kupffer cell production of FGF23 that may have a paracrine proinflammatory effect on hepatocytes. Liver-produced FGF23 may have systemic hormonal effects as well that influence diseases in in other organs.


Asunto(s)
Tetracloruro de Carbono , Macrófagos del Hígado , Animales , Tetracloruro de Carbono/farmacología , Citocinas/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Hepatocitos/metabolismo , Hormonas/metabolismo , Macrófagos del Hígado/metabolismo , Lipopolisacáridos/farmacología , Hígado/metabolismo , Ratones
11.
Food Chem ; 383: 132277, 2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-35168045

RESUMEN

Although Galla rhois has been used as a traditional medicine in Asian countries, there was no application of it in anti-browning food additives. Here, we tested whether Galla rhois inhibits apple juice browning. Apple juice browning was blocked at 250-1000 µg/ml of Galla rhois for 16 days but the effect of vitamin C did not last until a day. In vitro assays showed that the antioxidant capacity of Galla rhois was stronger than that of vitamin C. Further analysis by UPLC-MS/MS identified 17 phytochemicals containing gallotannin derivatives. Docking simulation and polyphenol oxidase activity assay indicate that the mechanisms underlying Galla rhois-mediated inhibition of the enzymatic browning include but are not limited to the combined effects of multiple compounds including galloylglucose- and gallate-derivates. Although marketability and long-term toxicity of Galla rhois should be tested, it may be applied as a food additive to elevate food quality.


Asunto(s)
Malus , Ácido Ascórbico , Productos Biológicos , Catecol Oxidasa/metabolismo , Cromatografía Liquida , Aditivos Alimentarios/farmacología , Malus/química , Espectrometría de Masas en Tándem , Agua
12.
Tree Physiol ; 42(6): 1296-1309, 2022 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-34726236

RESUMEN

Regulation of abscisic acid (ABA) biosynthesis helps plants adapt to drought stress, but the underlying molecular mechanisms are largely unclear. Here, a drought-induced transcription factor XsAGL22 was isolated from yellowhorn (Xanthoceras sorbifolium Bunge). Yeast one-hybrid and electrophoretic mobility shift assays indicated that XsAGL22 can physically bind to the promoters of the ABA biosynthesis-related genes XsNCED6 and XsBG1, and a dual-luciferase assay showed that XsAGL22 activates the promoters of the later two genes. Transient overexpression of XsAGL22 in yellowhorn leaves also increased the expression of XsNCED6 and XsBG1 and increased cellular ABA levels. Finally, heterologous overexpression of XsAGL22 in poplar increased ABA content, reduced stomatal aperture and increased drought resistance. Our results suggest that XsAGL22 is a powerful regulator of ABA biosynthesis and plays a critical role in drought resistance in plants.


Asunto(s)
Sequías , Populus , Ácido Abscísico/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Populus/genética , Populus/metabolismo , Estrés Fisiológico , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
13.
Hepatol Commun ; 6(5): 980-994, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34936222

RESUMEN

Activation of extracellular signal-regulated kinase (ERK) 1/2 promotes hepatocyte proliferation in response to growth stimuli, but whether constitutive hepatocyte ERK1/2 signaling functions in liver physiology is unknown. To examine the role of ERK1/2 in hepatic homeostasis, the effects of a knockout of Erk1 and/or Erk2 in mouse liver were examined. The livers of mice with a global Erk1 knockout or a tamoxifen-inducible, hepatocyte-specific Erk2 knockout were normal. In contrast, Erk1/2 double-knockout mice developed hepatomegaly and hepatitis by serum transaminases, histology, terminal deoxynucleotide transferase-mediated deoxyuridine triphosphate nick end-labeling, and assays of hepatic inflammation. Liver injury was associated with biochemical evidence of cholestasis with increased serum and hepatic bile acids and led to hepatic fibrosis and mortality. RNA sequencing and polymerase chain reaction analysis of double-knockout mouse livers revealed that the rate-limiting bile acid synthesis gene Cyp7a1 (cholesterol 7α-hydroxylase) was up-regulated in concert with decreased expression of the transcriptional repressor short heterodimer partner. Elevated bile acids were the mechanism of liver injury, as bile acid reduction by SC-435, an inhibitor of the ileal apical sodium-dependent bile acid transporter, prevented liver injury. Conclusion: Constitutive ERK1 and ERK2 signaling has a redundant but critical physiological function in the down-regulation of hepatic bile acid synthesis to maintain normal liver homeostasis.


Asunto(s)
Ácidos y Sales Biliares , Sistema de Señalización de MAP Quinasas , Animales , Ácidos y Sales Biliares/metabolismo , Regulación hacia Abajo , Homeostasis/genética , Hígado , Ratones , Ratones Noqueados
14.
Hepatology ; 74(5): 2745-2758, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34118081

RESUMEN

BACKGROUND AND AIMS: Interferon-γ (IFNγ) is a central activator of immune responses in the liver and other organs. IFNγ triggers tissue injury and inflammation in immune diseases, which occur predominantly in females for unknown reasons. Recent findings that autophagy regulates hepatotoxicity from proinflammatory cytokines led to an examination of whether defective hepatocyte autophagy underlies sex-specific liver injury and inflammation induced by IFNγ. APPROACH AND RESULTS: A lentiviral autophagy-related 5 (Atg5) knockdown was performed to decrease autophagy-sensitized alpha mouse liver (AML 12) hepatocytes to death from IFNγ in combination with IL-1ß or TNF. Death was necrosis attributable to impaired energy homeostasis and adenosine triphosphate depletion. Male mice with decreased autophagy from a tamoxifen-inducible, hepatocyte-specific Atg5 knockout were resistant to IFNγ hepatotoxicity whereas female knockout mice developed liver injury and inflammation. Female mice had increased IFNγ-induced signal transducer and activator of transcription 1 (STAT1) levels compared to males. Blocking STAT1, but not interferon regulatory factor 1, signaling prevented IFNγ-induced hepatocyte death in autophagy-deficient AML12 cells and female mice. The mechanism of death is STAT1-induced overexpression of nitric oxide synthase 2 (NOS2) as in vitro hepatocyte death and in vivo liver injury were blocked by NOS2 inhibition. CONCLUSIONS: Decreased hepatocyte autophagy sensitizes mice to IFNγ-induced liver injury and inflammation through overactivation of STAT1 signaling that causes NOS2 overexpression. Hepatotoxicity is restricted to female mice, suggesting that sex-specific effects of defective autophagy may underlie the increased susceptibility of females to IFNγ-mediated immune diseases.


Asunto(s)
Autofagia/inmunología , Hepatitis/inmunología , Interferón gamma/metabolismo , Hígado/patología , Animales , Apoptosis/inmunología , Autofagia/genética , Proteína 5 Relacionada con la Autofagia/genética , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades/inmunología , Femenino , Técnicas de Silenciamiento del Gen , Hepatitis/metabolismo , Hepatitis/patología , Hepatocitos , Humanos , Hígado/inmunología , Masculino , Ratones , Ratones Transgénicos , Óxido Nítrico Sintasa de Tipo II/metabolismo , Factor de Transcripción STAT1/metabolismo , Factores Sexuales , Transducción de Señal/inmunología
15.
Plant Physiol Biochem ; 163: 178-188, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33848930

RESUMEN

Glycoside hydrolase family 1 (GH1) ß-glucosidases (BGLUs) are encoded by a large number of genes and are involved in many developmental processes and stress responses in plants. Due to their importance in plant growth and development, genome-wide analyses have been conducted in the model plant species Arabidopsis thaliana, rice and maize but not in woody plant species, which have important economic and ecological value. In this study, we systematically analyzed Populus BGLUs (PtBGLUs) and demonstrated the involvement of several genes under stress conditions. Forty-four PtBGLUs were identified in Populus databases; these genes were located on 11 chromosomes, and the proteins of several PtBGLU genes were highly similar. More than 90% of PtBGLUs contain three conserved motifs. Collinearity results showed that 44 PtBGLU genes resulted from 12 tandem and 5 segmental duplication events. Phylogenetic analysis revealed that 128 BGLU genes from Populus trichocarpa, A. thaliana and Oryza sativa could be classified into 4 subgroups and subgroup Ⅱ and Ⅳ were differently having PtBGLUs and AtBGLUs. We further investigated whether several PtBGLUs responded to drought stress and ABA treatment, and the results showed that most of the selected BGLU genes were expressed in response to stress, which is consistent with previous studies involving rice and Arabidopsis homologous genes. Large numbers of stress-, hormone-, and development-related elements in the PtBGLU promoters suggest that BGLU genes may be involved in complex networks. Taken together, our results provide valuable information for an improved understanding of ß-glucosidase function in woody plants.


Asunto(s)
Oryza , Populus , Sequías , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Estudio de Asociación del Genoma Completo , Hidrolasas , Familia de Multigenes , Oryza/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Populus/genética , Populus/metabolismo
16.
Front Neuroinform ; 14: 40, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33117140

RESUMEN

Functional near-infrared spectroscopy (fNIRS) has been widely employed in the objective diagnosis of patients with schizophrenia during a verbal fluency task (VFT). Most of the available methods depended on the time-domain features extracted from the data of single or multiple channels. The present study proposed an alternative method based on the functional connectivity strength (FCS) derived from an individual channel. The data measured 100 patients with schizophrenia and 100 healthy controls, who were used to train the classifiers and to evaluate their performance. Different classifiers were evaluated, and support machine vector achieved the best performance. In order to reduce the dimensional complexity of the feature domain, principal component analysis (PCA) was applied. The classification results by using an individual channel, a combination of several channels, and 52 ensemble channels with and without the dimensional reduced technique were compared. It provided a new approach to identify schizophrenia, improving the objective diagnosis of this mental disorder. FCS from three channels on the medial prefrontal and left ventrolateral prefrontal cortices rendered accuracy as high as 84.67%, sensitivity at 92.00%, and specificity at 70%. The neurophysiological significance of the change at these regions was consistence with the major syndromes of schizophrenia.

17.
J Hepatol ; 73(5): 1013-1022, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32540177

RESUMEN

BACKGROUND & AIMS: The heterodimeric integrin receptor α4ß7 regulates CD4 T cell recruitment to inflamed tissues, but its role in the pathogenesis of non-alcoholic steatohepatitis (NASH) is unknown. Herein, we examined the role of α4ß7-mediated recruitment of CD4 T cells to the intestine and liver in NASH. METHODS: Male littermate F11r+/+ (control) and junctional adhesion molecule A knockout F11r-/- mice were fed a normal diet or a western diet (WD) for 8 weeks. Liver and intestinal tissues were analyzed by histology, quantitative reverse transcription PCR (qRT-PCR), 16s rRNA sequencing and flow cytometry. Colonic mucosa-associated microbiota were analyzed using 16s rRNA sequencing. Liver biopsies from patients with NASH were analyzed by confocal imaging and qRT-PCR. RESULTS: WD-fed knockout mice developed NASH and had increased hepatic and intestinal α4ß7+ CD4 T cells relative to control mice who developed mild hepatic steatosis. The increase in α4ß7+ CD4 T cells was associated with markedly higher expression of the α4ß7 ligand mucosal addressin cell adhesion molecule 1 (MAdCAM-1) in the colonic mucosa and livers of WD-fed knockout mice. Elevated MAdCAM-1 expression correlated with increased mucosa-associated Proteobacteria in the WD-fed knockout mice. Antibiotics reduced MAdCAM-1 expression indicating that the diet-altered microbiota promoted colonic and hepatic MAdCAM-1 expression. α4ß7 blockade in WD-fed knockout mice significantly decreased α4ß7+ CD4 T cell recruitment to the intestine and liver, attenuated hepatic inflammation and fibrosis, and improved metabolic indices. MAdCAM-1 blockade also reduced hepatic inflammation and fibrosis in WD-fed knockout mice. Hepatic MAdCAM-1 expression was elevated in patients with NASH and correlated with higher expression of α4 and ß7 integrins. CONCLUSIONS: These findings establish α4ß7/MAdCAM-1 as a critical axis regulating NASH development through colonic and hepatic CD4 T cell recruitment. LAY SUMMARY: Non-alcoholic steatohepatitis (NASH) is an advanced and progressive form of non-alcoholic fatty liver disease (NAFLD), and despite its growing incidence no therapies currently exist to halt NAFLD progression. Herein, we show that blocking integrin receptor α4ß7-mediated recruitment of CD4 T cells to the intestine and liver not only attenuates hepatic inflammation and fibrosis, but also improves metabolic derangements associated with NASH. These findings provide evidence for the potential therapeutic application of α4ß7 antibody in the treatment of human NASH.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Dieta Occidental/efectos adversos , Integrinas/metabolismo , Mucosa Intestinal/inmunología , Hígado/inmunología , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/farmacología , Linfocitos T CD4-Positivos/metabolismo , Moléculas de Adhesión Celular/antagonistas & inhibidores , Moléculas de Adhesión Celular/deficiencia , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Modelos Animales de Enfermedad , Microbioma Gastrointestinal/genética , Humanos , Integrinas/antagonistas & inhibidores , Integrinas/inmunología , Hígado/patología , Masculino , Ratones , Ratones Noqueados , Mucoproteínas/antagonistas & inhibidores , Mucoproteínas/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/patología , ARN Ribosómico 16S/genética , Receptores de Superficie Celular/deficiencia , Receptores de Superficie Celular/genética
18.
FASEB J ; 34(5): 7089-7102, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32275114

RESUMEN

There is compelling evidence implicating intestinal permeability in the pathogenesis of nonalcoholic steatohepatitis (NASH), but the underlying mechanisms remain poorly understood. Here we examined the role of bile acids (BA) in western diet (WD)-induced loss of colonic epithelial barrier (CEB) function in mice with a genetic impairment in intestinal epithelial barrier function, junctional adhesion molecule A knockout mice, F11r-/- . WD-fed knockout mice developed severe NASH, which was associated with increased BA concentration in the cecum and loss of CEB function. Analysis of cecal BA composition revealed selective increases in primary unconjugated BAs in the WD-fed mice, which correlated with increased abundance of microbial taxa linked to BA metabolism. In vitro permeability assays revealed that chenodeoxycholic acid (CDCA), which was elevated in the cecum of WD-fed mice, increased paracellular permeability, while the BA-binding resin sevelamer hydrochloride protected against CDCA-induced loss of barrier function. Sequestration of intestinal BAs by in vivo delivery of sevelamer to WD-fed knockout mice attenuated colonic mucosal inflammation and improved CEB. Sevelamer also reduced hepatic inflammation and fibrosis, and improved metabolic derangements associated with NASH. Collectively, these findings highlight a hitherto unappreciated role for BAs in WD-induced impairment of the intestinal epithelial barrier in NASH.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Colon/metabolismo , Dieta Occidental/efectos adversos , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Animales , Células CACO-2 , Moléculas de Adhesión Celular/deficiencia , Moléculas de Adhesión Celular/genética , Colon/patología , Modelos Animales de Enfermedad , Humanos , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/patología , Permeabilidad , Receptores de Superficie Celular/deficiencia , Receptores de Superficie Celular/genética , Sevelamer/administración & dosificación
19.
Hepatology ; 72(2): 595-608, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32108953

RESUMEN

BACKGROUND AND AIMS: The proinflammatory cytokine IL-1ß has been implicated in the pathophysiology of nonalcoholic and alcoholic steatohepatitis. How IL-1ß promotes liver injury in these diseases is unclear, as no IL-1ß receptor-linked death pathway has been identified. Autophagy functions in hepatocyte resistance to injury and death, and findings of decreased hepatic autophagy in many liver diseases suggest a role for impaired autophagy in disease pathogenesis. Recent findings that autophagy blocks mouse liver injury from lipopolysaccharide led to an examination of autophagy's function in hepatotoxicity from proinflammatory cytokines. APPROACH AND RESULTS: AML12 cells with decreased autophagy from a lentiviral autophagy-related 5 (Atg5) knockdown were resistant to toxicity from TNF, but sensitized to death from IL-1ß, which was markedly amplified by TNF co-treatment. IL-1ß/TNF death was necrosis by trypan blue and propidium iodide positivity, absence of mitochondrial death pathway and caspase activation, and failure of a caspase inhibitor or necrostatin-1s to prevent death. IL-1ß/TNF depleted autophagy-deficient cells of ATP, and ATP depletion and cell death were prevented by supplementation with the energy substrate pyruvate or oleate. Pharmacological inhibitors and genetic knockdown studies demonstrated that IL-1ß/TNF-induced necrosis resulted from lysosomal permeabilization and release of cathepsins B and L in autophagy-deficient cells. Mice with a tamoxifen-inducible, hepatocyte-specific Atg5 knockout were similarly sensitized to cathepsin-dependent hepatocellular injury and death from IL-1ß/TNF in combination, but neither IL-1ß nor TNF alone. Knockout mice had increased hepatic inflammation, and IL-1ß/TNF-treated, autophagy-deficient AML12 cells secreted exosomes with proinflammatory damage-associated molecular patterns. CONCLUSIONS: The findings delineate mechanisms by which decreased hepatocyte autophagy promotes IL-1ß/TNF-induced necrosis from impaired energy homeostasis and lysosomal permeabilization and inflammation through the secretion of exosomal damage-associated molecular patterns.


Asunto(s)
Autofagia , Hepatocitos/fisiología , Interleucina-1beta/fisiología , Hepatopatías/etiología , Factor de Necrosis Tumoral alfa/fisiología , Animales , Células Cultivadas , Femenino , Inflamación/etiología , Masculino , Ratones , Ratones Endogámicos C57BL
20.
Hepatology ; 69(6): 2455-2470, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30715741

RESUMEN

Glial cell line-derived neurotrophic factor (GDNF) is a protein that is required for the development and survival of enteric, sympathetic, and catecholaminergic neurons. We previously reported that GDNF is protective against high fat diet (HFD)-induced hepatic steatosis in mice through suppression of hepatic expression of peroxisome proliferator activated receptor-γ and genes encoding enzymes involved in de novo lipogenesis. We also reported that transgenic overexpression of GDNF in mice prevented the HFD-induced liver accumulation of the autophagy cargo-associated protein p62/sequestosome 1 characteristic of impaired autophagy. Here we investigated the effects of GDNF on hepatic autophagy in response to increased fat load, and on hepatocyte mitochondrial fatty acid ß-oxidation and cell survival. GDNF not only prevented the reductions in the liver levels of some key autophagy-related proteins, including Atg5, Atg7, Beclin-1 and LC3A/B-II, seen in HFD-fed control mice, but enhanced their levels after 12 weeks of HFD feeding. In vitro, GDNF accelerated autophagic cargo clearance in primary mouse hepatocytes and a rat hepatocyte cell line, and reduced the phosphorylation of the mechanistic target of rapamycin complex downstream-target p70S6 kinase similar to the autophagy activator rapamycin. GDNF also enhanced mitochondrial fatty acid ß-oxidation in primary mouse and rat hepatocytes, and protected against palmitate-induced lipotoxicity. Conclusion: We demonstrate a role for GDNF in enhancing hepatic autophagy and in potentiating mitochondrial function and fatty acid oxidation. Our studies show that GDNF and its receptor agonists could be useful for enhancing hepatocyte survival and protecting against fatty acid-induced hepatic lipotoxicity.


Asunto(s)
Autofagia/genética , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Hepatocitos/metabolismo , Lipogénesis/genética , Enfermedad del Hígado Graso no Alcohólico/patología , Palmitatos/metabolismo , Animales , Muerte Celular , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Femenino , Células Hep G2/citología , Células Hep G2/metabolismo , Hepatocitos/citología , Humanos , Lipólisis/efectos de los fármacos , Masculino , Ratones , Ratones Transgénicos , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Consumo de Oxígeno/fisiología , Distribución Aleatoria , Ratas , Sensibilidad y Especificidad , Transducción de Señal , Sirolimus/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...